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Abstract

We’ve seen a number of examples in class of types which use variables.
Having variables in our type systems lends a great deal of power to lan-
guages using these type systems. We’re going to look at how variables are
used in generic programming, inductive & coinductive types, and polymor-
phic types.

Variables in Expressions

To explain how variables in types work, let’s look more carefully at how we’ve
used variables until now:

wild(x.d) (Card.Deck) Deck
let(e1; x.e2) (Exp, Exp.Exp) Exp
rec(e; e0; x.y.e1) (Exp, Exp, Exp.Exp.Exp) Exp
case(e; x1.e1; x2.e2) (Exp, Exp.Exp, Exp.Exp) Exp
lam(τ; x.e) (Type, Exp.Exp) Exp

Even though each of these syntactic forms uses variables in some way, they all
behave differently. Recall at the beginning of the course we asserted:

Variables are given meaning by substitution.

Each of these operators has a different meaning because of the rules defining it’s
statics and dynamics. In particular, the rules for each of these operators has
involved a substitution:

let(e1; x.e2) → [e1 / x]e2
app(lam(τ; x.e); e') → [e' / x]e
...

So we can see from the rules what meaning the variables has.
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Polynomial Type Operators

For System T with products and sums, the grammar of our type system looked
like this:

τ ::=
nat() nat () Type
arr(τ1; τ2) τ1 → τ2 (Type, Type) Type
unit() 1 () Type
prod(τ1; τ2) τ1 × τ2 (Type, Type) Type
void() 0 () Type
sum(τ1; τ2) τ1 + τ2 (Type, Type) Type

So we can see that our operators for constructing types have all had valence 0.

Our first foray into adding variables to our types is what we will call “polyno-
mial type operators.” Polynomial type operators have the exact same syntax as
our types from System T, augmented with variables and binding sites (but for
technical reasons, without functions):

τ ::=
t t
t.τ t.τ
nat() nat () Type
unit() 1 () Type
prod(τ1; τ2) τ1 × τ2 (Type, Type) Type
void() 0 () Type
sum(τ1; τ2) τ1 + τ2 (Type, Type) Type

An important catch comes along now that we have variables in our program:
variables can be either free or bound, so we have to define what a valid polynomial
type operator looks like. The complete set of rules can be found in the book, but
the important rule looks like this:

__________
t.t poly

So if our polynomial type operator has a variable in the body, it must be the
variable we declared out front. Put another way, we can only ever use one
variable. This makes sense by analogy with polynomials from algebra class:
f(x) = x2 + 2x + 1 is valid, but f(x) = x + z is not, because the f(x) part says
that we can only use x in our polynomial.

As a side note, I’m not trying to say that we can’t have polynomial types with
more than one variable. We’ve seen functions like f(x, y) in school before. But
for our purposes, if we say “polynomial type operator,” there’s only one free
variable in the τ of t.τ .
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Generic Programming

On their own, polynomial type operators aren’t all that cool. We have variables,
but we haven’t given them meaning with substitution!

To this end, one thing we can do with polynomial type operators is use them for
generic programming. “Generic programming” is just a fancy way of saying that
we don’t want to have to repeat ourselves.

In particular, one example of generic programming is the generic map function
map{t.τ}(f)(e). Intuitively, map is just a way of applying a function to all the
“interesting” parts of a datatype, where the “interesting” parts are demarcated
by free occurrences of t in τ .

The type of map looks like this:

map{t.τ} : (ρ → ρ') → [ρ/t]τ → [ρ'/t]τ

So what we see going on here is that if we have a function with type ρ → ρ′,
then map will take in something which has ρ in all the t placeholders, and return
something which has ρ′ in all the t placeholders. Another cool thing here is that
this substitution happens in the statics! All the examples of variable substitution
we had before were in the dynamics. This makes sense; types are a static thing,
whereas values are a runtime thing.

The cool part about map is that it will work for any polynomial type operator that
we write down! There are a lot of types we can write down with just products,
sums, and variables. However, there are a bunch that we can’t… I’m thinking
of types like list, nat, tree, stream, etc. These types are recursive, and are not
expressible with just products and sums.

Inductive and Coinductive Types

Polynomial types are great, but there are still more kinds of data we’d like to be
able to represent in our type system. We can revisit the syntax for polynomial
types, and update it to include inductive and coinductive types:

τ ::=
t t

unit() 1 () Type
prod(τ1; τ2) τ1 × τ2 (Type, Type) Type
void() 0 () Type
sum(τ1; τ2) τ1 + τ2 (Type, Type) Type

3



arr(τ1; τ2) τ1 → τ2 (Type, Type) Type

ind(t.τ) μ(t.τ) (Type.Type) Type
coi(t.τ) ν(t.τ) (Type.Type) Type

Note how nat, an inductive type, is not here anymore. This is because we can
define it outright without having to special case it into our type system.

Another thing to note from the arities is that the operators ind and coi actually
create a Type. In the same sense that arr takes in two Types and creates another
Type, ind and coi take in a Type with free var and wrap it in an abstractor to
bind the free variable, thus creating a Type.

As an example, our language can now have values of type μ(t. 1 + t), or ν(t.
1 + (μ(s. 1 + s) × t)). There are two things to note here:

• These strings of symbols are really annoying to work with as a whole, so
we often define names for these types, and refer to them by their names
rather than their abstract syntax.

• In order to have values of this type, we need corresponding constructs in
our language of Exps that let us introduce and eliminate things of this type.

The type μ(t. 1 + t) behaves like the natural numbers, so we call it nat. This
means that ν(t. 1 + (μ(s. 1 + s) × t)) becomes ν(t. 1 + (nat × t)). This
type behaves like streams of natural numbers, so we call it natstream.

Now let’s look at the constructs of our language that we’ll use to introduce and
eliminate these types:

fold{t.τ} : [μ(t.τ) / t]τ → μ(t.τ)
rec{t.τ} : ([ρ/t]τ → ρ) → μ(t.τ) → ρ

unfold{t.τ} : ν(t.τ) → [ν(t.τ) / t]τ
gen{t.τ} : (ρ → [ρ/t]τ) → ρ → ν(t.τ)

This is a lot of substitution, so sometimes we write the same thing with function
application instead of substitutions because it looks prettier:

fold{t.τ} = fold{φ} : φ(μ(φ)) → μ(φ)
rec{t.τ} = rec{φ} : (φ(ρ) → ρ) → μ(φ) → ρ

unfold{t.τ} = unfold{φ} : ν(φ) → φ(ν(φ))
gen{t.τ} = gen{φ} : (ρ → φ(ρ)) → ρ → ν(φ)

So again, we can see how the substitution gives meaning to these types, even
though it’s not entirely obvious at first what that meaning is.
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In recitation this week, we saw the type of fold{t.1 + (t × t)} (or in words,
the instance of fold for data-less trees).

If the general form for fold is

fold{t.τ} : [μ(t.τ) / t]τ → μ(t.τ)

then the fold for trees is

fold{t.1 + (t × t)} : [μ(t.1 + (t × t)) / t](1 + (t × t)) → μ(t.1 + (t × t))
: [tree / t](1 + (t × t)) → tree
: 1 + (tree × tree) → tree

It becomes readily apparent where the recursive structure of inductive types
comes from. We create a tree by giving fold either unit or two trees, and it gives
us back a tree. We used substitution and type variables to define the types to
be recursive in this way.

As another side note, to see more examples of how the mechanics of these sub-
stitutions work, check the recitation notes for week 5. They have an example for
fold, rec, unfold, and gen.

Polymorphic Types

The most recent example of variables in our types that we saw dealt with System
F, whose syntax looks like this:

τ ::=
t t
arr(τ1; τ2) τ1 → τ2 (Type, Type) Type
all(t.τ) ∀(t.τ) (Type.Type) Type

e ::=
lam(τ; x.e) λ(x:τ). e (Type, Exp.Exp) Exp
ap(e1; e2) e1 (e2) (Exp, Exp) Exp
Lam(t.e) Λt. e (Type.Exp) Exp
App(e; τ) e [τ] (Exp, Type) Exp

We’ve only briefly touched on polymorphic types, but the idea is that we can
now write down functions that work the same regardless of our choice for the
types of some parts of the expression.

Keeping with the theme of meaning through substitution, the interesting case
for System F is in type applications:
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∆ Γ ⊢ e : ∀(t.τ ′) ∆ ⊢ τ type
∆ Γ ⊢ e[τ ] : [τ/t]τ ′

So what this is saying is that if some expression e is valid for all choices of t,
then it’s definitely valid for the particular choice of τ , provided that τ is indeed
a type.

Putting it All Together, and Then Some

We’ve seen plenty of examples of types with variables, but as one last bit of “food
for thought,” we now have almost all the tools to define parametric data types:

list = λ(α.μ(t. 1 + (α × t)))
α list = ∀(α. list(α))

tree = λ(α.μ(t. 1 + (t × α × t)))
α tree = ∀(α. tree(α))

stream = λ(α.ν(t. 1 + (α × t)))
α stream = ∀(α. stream(α))

I say almost because I cheated a bit and snuck in this λ(α.τ) construct that
we’ve never seen. These are “type-level lambdas” and we don’t cover them in
this course—everything from here on is just for fun.1

You’ll notice that there’s a difference between list and α list. The former is
a type constructor while the latter is a type. When we’re writing SML, we can
have actual values of type α list, like [] or the x in fn (x : α list) => ...
for example. But we can’t have values of type list, because it’s actually a type
constructor, not a type itself.

If we squint, we see that the α list we’re familiar with from SML uses both
polymorphic types (i.e., ∀(t.τ)) and inductive types (i.e., μ(t.τ)). This should
match up with what we expect: polymorphic types basically say “contains any-
thing” and inductive types basically say “repeats itself.”

If we squint even harder, what we get are type operators!

α.μ(t. 1 + (α × t))
α.μ(t. 1 + (t × α × t))
α.ν(t. 1 + (α × t))

1We don’t cover type lambdas in this class (but you will if you take HOT Compilation!)
The gist of it is that type-level lambdas take in types and construct new types.
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But these type operators aren’t polynomial type operators. Polynomial type oper-
ators only had products and sums, whereas these have inductive and coinductive
types. This means that our map{t.τ} won’t work on them… yet!

If we can manage to define the cases of map for inductive and coinductive types,
then we’ll automatically have a map function for any polymorphic and recursive
data structure we can imagine! In symbols, we need to define these cases:

map{α.μ(t.τ)} → ...
map{α.ν(t.τ)} → ...

You’ll see how to do this on hw03!
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